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ABSTRACT 

The effects of horizontal shear of the  mean zonal wind on the lateral propagation of disturbances through the 
Tropics is studied by the use of a one-layer model. The governing equations are reduced t o  a second-order differential 
equation for E, the northward component of velocity. The equation is analyzed as an eigenvalue problem and solved 
numerically for the free modes of the Tropics for the case with zero mean flow. These solutions are compared with 
solutions that are forced at a boundary situated in mid-latitudes, for cases with and without a mean zonal flow. 

A t  “critical latitudes,” the basic equation has a singularity (where the phase speed of a wave forced a t  the 
boundary is equal t o  the mean flow). The case for forced motions is investigated in more detail by numerically 
studying the evolution of disturbances as an initial value problem for the case of nondivergent flow. 

The horizontal shear is shown to significantly alter the types of mid-latitude motions that can affect tropical 
motions. In particular, disturbances with large eastward phase propagation are shown to have negligible effect. 
Disturbances that have phase speeds that are somewhere equal to the mean flow are shown t o  be absorbed a t  the 
critical latitude. Disturbances with phase speeds more westward than the mean flow may be free to  propagate into 
the Tropics, providing their wavelengths are not too short. 

I .  INTRODUCTION 

In  the last few years, there has been renewed interest 
in the study of large-scale tropical wave motions. To a 
certain extent, the low spatial resolution of the observa- 
tional network in the Tropics has been offset by the use 
of analysis of long time series of wind data a.t a few sta- 
tions (Rosenthal 1960, Maruyama 1968). Theoretical 
works by Rosenthal (1965), Matsuno (19661, Koss (1967), 
and Lindzen (1967) have been of great value in inter- 
preting the data, since tropical motions may consist of 
several types of wave disturbances (such as Kelvin waves 
and mixed Rossby-gravity waves) that do not occur 
elsewhere. In  a recent summary, Wallace (1969) described 
the results of observations of the Kelvin-type waves, the 
mixed Rossby-gravity modes (which are vertically prop- 
agating and occur mainly in the stratosphere), and two 
types of tropospheric modes that do not propagate ver- 
tically. With the exception of one of the tropospheric 
modes that has a wavelength of 3000 km, the ohher waves 
have wavelengths in excess of 10,000 km. 

The sources of energy for synoptic scale Rossby wave 
motions at  low latitudes is poorly understood at  present. 
Suggested mechanisms have included tropical instabilities 
associated with latent heating or horizontal wind shear 
and the lateral coupling of the Tropics with mid-latitude 
waves. For example, Charney and Eliassen (1964) and 
Rosenthal (1967) first studied the stability of quasi- 
ba.lanced disturbances driven by organized convection; 
research on this conditional instability of the second 
kind is presently being continued by several investigators. 
Investigations into the possibility of bwotropic instability 
a t  low latitudes have recently been accomplished by 
Nitta and Yanai (1969) and Lipps (1970). 

The lateral coupling mechanism was proposed by Mak 
(1969) and demonstrated to be plausible in a simple 
two-layer stochastic model. A prominent dynamical in- 
fluence in the model was the horizontal shear of the zonal 
wind. However, Mak chose to emphasize the statistics of 
the motions and did not attempt to explain the results in 
physical detail. This paper is an attempt to  isolate the 
various effects of horizontal shear on this process of 
energy exchange between the Tropics and mid-latitudes. 

The propagation of energy through a shear flow arises 
in other physical problems such as the generation of 
surface water waves (Miles 1962) and the upward propa- 
gation of gravity waves in the atmosphere. Internal 
gravity wave theory (Bretherton 1966) predicts that 
certain layers (where the mean wind is equal to the trace 
speed of the wave) tepd t o  absorb wave energy. Dickinson 
(1970) has recently studied Rossby wave absorption in 
the immediate vicinity of such a region. Other layers with 
varying mean flow profiles also redistribute the energy 
through the processes of reflection and tunneling. 

Charney (1969) discussed the problem of energy propa- 
gation into the Tropics qualitatively by the use of WKB 
methods (Morse and Feshbach 1953). His main conclusion 
was that westerly disturbances should not propagate far 
into an easterly regime. Mak’s results are consistent with 
this idea in that the forced motions in the Tropics of his 
model were found to exhibit predominantly easterly phase 
propagation, even when the bulk of the mid-latitude wave 
forcing was westerly. 

The above work indicates that the characteristics of the 
mean flow may highly restrict the character of that lateral 
forcing which is likely to produce effects in the Tropics. 
The purpose of this work is to shed additional light on this 
interaction. The basic model is formulated, and a wave 
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equation is derived from it in section 2. Section 3 intro- 
duces a method of analysis of the problem involving free 
and forced solutions and illustrates it for the case of zero 
mean zonal flow. Section 4 treats forced motion in the 
presence of a zonal flow for the cases in which there is no 
wave absorption, and comparison is made with the results 
of section 3. Section 5 contains a treatment of the case in 
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Because we are only considering deep motions, H can 
be replaced by Ho, an average of H over the whole domain 
of interest, when it is multiplied by the divergence in eq 
(3). The Coriolis parameter,f, is assumed to vary linearly 
in the northward direction: 

f=Py (4) 

where p=dj/dy=2.29 X lo-" m-l s-l at the Equator. From 
the assumptions that the base state is composed of a 
steady zonal velocity that varies only with y, it  follows 

which wave absorption occurs. The process of absorption 
is shown by solving for the establishment of a wave 
regime as an initial value problem. 

2. FORMULATION OF THE MODEL 

Since we intend to focus on the effects of horizontal 
shear on the lateral propagation of wave energy, we will 
consider a model that allows only quasi-horizontal motion. 
This limits the applicability of the results to motions 
occurring in deep atmospheric layers. But, because of the 
paucity of observations, only these largest modes have 
been observed in detail. Examples where this approxima- 
tion is valid are the tropospheric modes that do not 
propagate vertically which were discussed by Wallace 
(1969). These wave motions can occur in a simple one- 
layer model on an equatorial beta-plane such as Matsuno 
(1966) used. We wish to alter this model systematically 
by adding the effects of a zonal shear flow. 

We consider a single layer of a homogeneous, inviscid 
fluid with a free surface in hydrostatic equilibrium. The 
equations for the fluid are linearized about a steady base 
state consisting of zonal flow U(y) that vanes in the 
northward direction y. The linearized equations for the 
two horizontal velocity components (which depend on 
the two horizontal coordinates and time only) and the 
equation of continuity are 

and 

-+u-+v' - (g")+g" -+- =o. (3) a41 w a 
at ax ay (Z :;) 

The primed quantities are perturbation variables, and the 
capital letters (U,  H )  refer to the base state. In eq (3), 
g' is a scaled acceleration due to gravity. In our application 
of the model to the earth's atmosphere, Matsuno (1966) 
has shown that it may be thought of as a value reduced 
as follows: - 

g'=g (y) 
where 8 is the mean potential temperature of the column 
and 6 is its difference over the vertical distance H. 

Velocities in the x and y directions are u' and v', and 
the geopotential of the top surface is $ (=g'z). 

that it is geostrophic: 

(5) 

Equations (l), (2), and (3) can be made nondimensional 
by choosing time and length scales of 

A A T= (9' Ho)-l 146 -1 12 L = (g",) 1 l4fi-112. (6) 

I t  follows that the velocity scale is LIT=(g'Ho)1/2, the 
speed of long gravity waves in the model'when 0 is set 
equal to  zero. Using eq (4), (5), and (6), the equations for 
the nondimensional variables take the fcrm 

A h  

and 

Assume solutions of the form 

The equations then reduce to 

au ik( u- C)U+V - - yv+ ik4=0, 
dY 

(11) 

(12) 

&) 
dY 

ik( u- c)v+ yu+ -= 0, 

dv 
and 

ik(U-C)~-yUv+iFru+-=O. dY 

By solving eq (10) for U and substituting in the last two 
equations, we obtain 

and 

415-428 0 - 71 - 5 
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Different'iation of eq (14) with respect to  y and substitution 
for d$/dy from eq (13) and for 6 from the undifferentiated 
form of eq (14) yields a single equation for v: 

Equation (15) is the general governing equation for 
waves in the Tropics for this model. Because the speeds of 
different wave types vary so greatly, the terms in eq 
(15) are not of uniform significance. For example, the 
approximation c>U may be a good one for gravity 
waves. On the other hand, our interest in the slower 
moving waves (quasi-geostrophic away from the Equator) 
leads us to explore the .case C- U. Thus under the condi- 
tions 

and using the fact that [1/(?7--~)~]{1-1/[1-(U-c)~]] has 
magnitude unity, one can scale the terms of eq (15). 

1 L2U u2 - 
PL2U2 k2L2 - L2/(U-c) - -  L4 UL2 u/ (U- 4 

U2 uL41( u- c )  

The U and L are characteristic nondimensional velocities 
and lengths. For flows in which & T & = l O O  m s-l 
(A8/8=0.lJ Ho=10 km), the length scale from eq (6) is 
approximately 2100 km. If we consider this length scale 
as unity and assume U=O.l and k = 1.0, the dominant 
terms in eq (15) (with scalings underlined) give 

-+v d2v ( - k 2 - y 2 + L  
dY2 

This equation is the approximate governing equation for 
the propagation of large-scale, slowly moving wave 
motions in the Tropics. 

This equation may be thought of as a generalization 
of the equation derived by Matsuno (for the case U=O) 
to  cases involving mean zonal shear flows. We consider 
the kinds of solutions to eq (16) in the following two 
sections. Section 3 considers the case U=O, whereas 
section 4 considers the more general case U(y) #O. 

3. FREE AND FORCED WAVES IN THE ABSENCE 
OF A MEAN ZONAL FLOW 

The analysis of the last section developed a second-order 
ordinary differential equation for v,  the complex represen- 
tation of the northward component of velocity of the form 

We now wish to use this equation to investigate the 
response of the Tropics to  forcing at  the northern and 
southern boundaries. Since the equation is linear, we can 
consider the forcing composed of a superposition of 
different wave numbers, k ,  and phase speeds, c. The 
response of the Tropics will then be the sum of the re- 
sponses to the various boundary modes. Moreover, it is 
possible to separate the effects of the two boundaries by 
setting v=O at one boundary and v#O at the other and 
adding the response to the solutions obtained by reversing 
the procedure. This procedure of adding solutions obtained 
from the two boundaries for various frequencies (=kc)  
and wave numbers, k ,  has been used by Mak (1969) 
for a two-layer model with internal dissipation. Mak did 
not explain physically why the eastward-propagating 
waves at  the boundary (which are typical of mid-latitude 
motions) produced a negligible response in the Tropics. 
To isolate the effects of different forcing situations and 
the effect of the wind shear on the response, we first 
treat the problem without a zonal wind. Since we expect 
the forced response to be related to  the free modes of the 
Tropics, we begin by examining them. 

When the mean velocity is set identically equal to zero, 
eq (15) reduces to 

As shown in the last section, the term k2c2v is smaller 
than the other terms when we consider the slowly moving 
large-scale waves. To facilitate comparison with Mat- 
suno's results, we will include this term for the time being. 
The free waves are described by the eigenfunctions of this 
equation satisfying the homogeneous boundary conditions. 
In  the infinite domain, the solutions are e-Y2/2 multiplied 
by Hermite (Abramowitz and Segun 1965) polynomials, 
Hn(y) ; the eigenvalues are 

1 
a= k22-  k2--= 2n+ 1, n= 0,1,2, . . . , 

C 

where n is the order of the polynomial. For each value of 
n, there are three roots for c,  the phase speed. Two roots 
(c -&&+ (2n+l/k2) correspond to gravity waves, and 
one ( C N (  - l /[P+2n+ 11) ) corresponds to a Rossby 
wave. Mote that the neglect of the k2cZ term in eq (17) 
has the effect of filtering out the gravity wave solutions, 
for the characteristic equation then reduces to a linear (not 
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cubic) form in which the sole root is that of the Rossby 
wave : 

1 -k2--=2n+l, n=0,1,2, . . . . 
C 

As Matsuno pointed out, the low-order modes (small n) 
are trapped near the Equator (for n=O, v=e-V2l2) and are 
relatively insensitive to  far-distant boundaries. However, 
the higher order modes found by Matsuno would be 
affected by the finiteness of the real earth. Theoretical 
evidence regarding such boundary effects has been pre- 
sented by Rosenthal (1965) and Koss (1967). 

To  facilitate comparison with later numerical results, 
we now study the numerical eigenvalue problem corre- 
sponding to the homogeneous boundary conditions v=O at  
y= 10.0 by finding the eigenvalues and the eigenfunc- 
tions of the finite-difference analog of the homogeneous eq 
(17). Since eq (17) is symmetric with respect to  the Equa- 
tor, the solutions are either odd or even. Thus, in deter- 
mining the eigenfunctions, we need only to compute the 
solution for half of the domain. We consider two eigen- 
value problems as defined by the boundary conditions: 

v (O)=O,  v(lO)=O (the odd case) 

dv -(O)=O, v(ZO)=O (the even case). 
dY 

and 

The finite-difference scheme gives the following algebraic 
equation for the value of v at  the i th  (Le., y=iAy) grid 
point in terms of the values of v on either side of it : 

This can be written as 

- y:v*= -av* V*+l +v* - 1 - 2% 
@YI2 

where 
-k2+k2~2--. 1 

C 

The choice Ay=0.5 corresponds to 19 internal grid points 
between y=O and y=10. Once the boundary conditions at  
y=O and y=10 are specifled, there are 19 algebraic equa- 
tions for the 19 values of v, written here in matrix form: 

A is a 19x19 matrix of the known coefficients, and v is a 
column vector of length 19. For the even case, v(0) was 
set equal to vl, the first value of v north of the Equator, to 
approximate the zero derivative at  the Equator. Equa- 
tion (19) can be written in the form 

(A+ aI) V= 0 (20) 

where I is the unit matrix. Since this is a homogeneous 
system of linear algebraic equations, for nontrivial solu- 

tions for v, the determinant of the matrix (A+aI) must 
vanish. The values of a for which this occurs are the 
eigenvalues of the matrix [-A]. 

The eigenvalues and associated eigenvectors of the sys- 
tem (20) were determined numerically. Figure 1 exhibits 
some eigenfunctions that are symmetric about the Equa- 
tor. We see that each mode is centered near a latitude 
~ = a ' / ~ .  The highest modes (large a) are found away from 
the Equator and are understandably more nearly quasi- 
geostrophic in character. I n  these cases, the lowest fre- 
quency then reduces to the classical mid-latitude Rossby 
wave frequency 

--Bk 
k2+P 

a=- 

where P=a. 

1-0.5 

wr6.04 ]lo 

14.5 . 

NORTHERN HEMISPHERE 

FIGURE 1.-Free modes of the Tropics, in the absence of a mean 
flow, that are symmetric about the Equator (y=O). The scale 
magnitude of u is arbitrary. 
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FIGURE 2.--Forced solutions for v ( y )  for the case of zero mean flow. 
Where a resonant response occurs, the analogous free mode is 
given as a dashed line. 

Additional numerical eigensolutions were found for the 
free waves for the case with boundaries at y=f3.0. It 
was found that the trapped solutions with smallest a! 

were not changed much by the closer boundaries. They 
are shown as dashed lines in figure 2 and will be discussed 
shortly. Solutions corresponding to larger values of a! 

were so affected by truncation error as to have little value. 
The effect of forcing in the Tropics in the absence of a 

zonal flow was investigated by specifying a nonzero value 
of v at the boundary y= +3.0 and setting v=O at y= 1 3 . 0 ,  
thus modeling the effects upon the tropical atmosphere 
of a wave moving at higher latitudes in the Northern 
Hemisphere. 

By arbitrarily setting the nonzero boundary condition 
and specifying c and k, we confine ourselves to  looking 
at the asymptotic ( t -+rn)  solution to the initial salue 
problem generated by starting a wave traveling at  constant 

speed and amplitude along the northern boundary until 
the whole tropical atmosphere is pulsing at  its frequency 
and wavelength. By ignoring the transient responses to 
the forcing at the boundary, we are neglecting the way 
in which the energy initially enters the Tropics, preferring 
to look at the Tropics a long time later when a steady 
energy density has developed. 

The forced solutions (with U=O) are shown as solid 
lines in figure 2 for various values of the phase speed. We 
see that the ability of the motions to  penetrate into the 
Southern Hemisphere depends strongly on the phase speed 
(in the cases shown, all are to the west). The maximum 
response at all latitudes is found for waves in which phase 
speeds are close to those of a free mode, all of which move 
westward. In these quasi-resonant cases, we see that the 
structure of the response is very nearly the same as that 
of the free mode, as expected. Figure 2 also exhibits two 
“nonpropagating” responses (c=O.16, c=0.22) that do 
not resemble a wavelike structure in y and are of small 
amplitude throughout most of the Tropics. 

4. FORCED WAVES IN THE PRESENCE 
OF A ZONAL CURRENT 

The analysis in section 3 using eq (16) cannot completely 
be extended to the case in which there is a zonal current, 
because it is not possible to set up a conventional matrix 
eigenvalue problem for the free modes using eq (16) alone. 
I t  is possible to use the complete set of eq (10-12) as a 
basis for an eigenvalue approach, but the problem then 
becomes three times larger. 

It is of course possible to use eq (16) to  treat the forced 
problem, in which c is specified a priori. The problem can 
be analyzed qualitatively in the following manner. 
Equation (16) can be written as 

The solutions can be broadly classified as being of three 
types: (1) propagating, (2) evanescent, and (3) singular. 
In  regions where Q is positive, there are oscillatory solu- 
tions and thus latitudinal propagation. In  regions where 
Q is negative, the wave is evanescent, since solutions 
forced at  one boundary die off exponentially in y (recall 
the case c=-0.22 in fig. 2). In  regions where [U(y)-c] 
approaches zero, the coefficient Q gets arbitrarily large 
since it contains l / (U-c) .  The equation has a regular 
singular point there. Since this case is difficult to treat 
numerically by the method we have employed so far, it 
will be the subject of the next section. In  this section, we 
will try to learn something of the nonsingular solutions. 

We will discuss a special case in which a parabolic 
zonal flow and a wave number k are specilied. A fair 
approximation of the mean winds throughout the tropo- 
sphere (M& 1969) is 

U(y)  = -0 .04+0.0625~2 (22) 
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-0.10 -0.05 0 0.05 0.10 
C 4  

FIQURE 3.-Values of &(y, k, U, c) for k=2.1 and the mean flow 
given as a dashed line; y=1.5 corresponds to approximately 
30’ of latitude; positive values indicate propagating solutions 
while negative values indicate evanescent solutions. In the hatched 
region, Q-1/( U-c)  and thus becomes arbitrarily large. 

C =  -0.07 

v o  

-2 

4 

I - I  -15 

-2 * 

-4 - 
FIQURE 5.-Same as figure 4, except for different values of e. 
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, ‘.. 
I ‘k ...-./.I - I  -1.5 

C=-0.09 

1 c = -0.10 
-2 

FIGURE 6.-Same as figure 4, except for different values of e. 

FIGURE 4.-Solutions of v ( y )  where v is forced to be 1.0 at the north- 
ern boundary, for different values of c. The mean flow U(y) and 
k (=2.1) correspond to values in figure 3. 

where we have again chosen 100 m s-’ for dm. This 
gives a 4 m easterly wind at  the Equator and a 10 
m s-l westerly wind at  y=1.5 (- 30’N). 

Figure 3 shows values of Q as a function of c and y 
when L 2 . 1  (corresponding to an east-west wavelength 
of 6000 km) for the zonal flow specified in eq (22). The 
zonal flow is also plotted on the diagram as a dashed line. 
Note that the range of c for which (U(y)-c)=O at some 
latitude is hatched, indicating that the equation becomes 
singular at  the dashed line. Regions where Q is positive 
for the entire range of y occur only for waves moving 

westward faster than the maximum easterly zonal current, 
but more slowly than about 7 m s-l. 

Waves moving westward faster than 7 m s-’ must first 
tunnel” their way through the evanescent region near 

the northern boundary. Inspection of eq (16) shows that 
the evanescent region expands downward and in the 
direction of increasing e as the z wavelength decreases 
(as k increases). Thus, it appears that only the longer 
waves can propagate freely into the Tropics; s a c i e n t l y  
short waves may suffer attenuation for all wave speeds. 

Forced solutions were computed for nine different 
values of e in the propagating region for this current. 
They are shown in figures 4 through 8. 

We see that, in many propagation cases, the wave- 
length changes significantly with latitude, implying a 

LI 
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FIGURE 7.-Same as figure 4, except for different values of e. 
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continuous process of reflection and transmission that also 
alters the amplitude variations. The evanescent region 
near the left boundary is too weak to detect in most of 
the cases shown in figures 6-8. The gross magnitude of the 
response follows the same general trend as if the free 
modes were those in the problem treated in section 3. 
There are four responses for which a value of w is greater 
than that imposed on the boundary (figs. 4, 5, 7, and 8) 
and can therefore be called resonant. The ones with the 
most detailed structure (corresponding to the higher order 
polynomials of Matsuno) have the lower phase speeds. 
Under the reasonable assumption that figures 4, 5, 7, and 
8 correspond to n=4,3,2,  and 1, respectively, it is possible 
to compute the theoretical phase speed using Matsuno’s 

TABLE 1.-Comparison of low-frequency wave speeds taken from the 
advective model with Matsuno’s approximate expression for the case 
without zonal current 

Description n-+ 1 2 3 4 

Matsuno wave with no zonal current -0.14 -0.10 -0.08 -0.07 
Model with zonal current - . 1 2  -.os -.w - . 0 5  

approximate formula 

1 
h?+2n+l 

e = -  

for free Rossby modes and compare it with the speeds for 
our results (table 1). 

Note that the free modes are shifted in phase velocity 
in the direction of the average of the wind over the Tropics 
(U(y) averaged from y=O.O to y=1.5 is +0.034, i.e., 
westerly). This implies that the net effect of the shear 
flow is to cause a larger difference between the resonant 
phase velocity and the velocity of typical mid-latitude 
forcing than would result if the wind were the same at all 
latitudes. If the wind were westerly at all latitudes, the 
free modes would be Doppler-shifted by approximately 
the same amount as the forcing motions in mid-latitudes. 
With shear, however, the mid-latitude motions will be 
advected by a strong westerly current, in contrast to the 
free tropical modes that are advected by more easterly 
winds. 

5. FORCED SOLUTIONS 
WITH PROPAGATION AND ABSORPTION 

The behavior of a wave whose phase speed approaches 
the speed of the zonal current has been studied in other 
treatments of wave propagation through a shear flow. 
The fact that the linearized equations exhibit a singularity 
a t  that phase speed has led investigators to use terms 
like “critical layer” (Booker and Bretherton 1967) or 
“singular line” (Dickinson 1968). Because of the singu- 
larity, attempts to treat the problem using numerical 
methods have led to some confusion in the literature. 
Hines and Reddy (1967) discussed the alternative physi- 
cal interpretations of the critical layer effect in terms of 
reflection processes, while Bretherton (1966) discussed 
the problem in terms of classical ray tracing theory and 
found absorption of wave energy. The matter was finally 
resolved when Booker and Bretherton (1967) showed 
that an alternative approach, in which a simple model 
is allowed to achieve a steady state after being started 
from rest, led to the absorption predicted by Bretherton. 

The problem we have is actually both physically and 
mathematically more like the problem of Dickinson 
(1968) since it occurs for horizontal shear flow and has 
the same type of singularity. (The coefficient of w in eq 
(16) goes to infinity as U-w like I/(V-c); in the gravity 
wave theory, the analogous coefficient goes like 1/( U-c)?.) 
Dickinson noted that the singularity appears to invalidate 
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any planetary wave theory in which the waves are arti- 
ficially confined between reflecting barriers. He states 
that there are no normal modes of a “singular wave 
guide” (i.e., a region bounded by critical layers). Dickin- 
son (1970) has also solved the problem considered here 
for the long-wave approximation (i.e., the term k2 of eq 
27 is neglected) and obtained results consistent with 
ours. 

The solution bf the “asymptotic” problem contains 
many mathematical difficulties and still fails to  answer 
several fundamental questions. Hines and Reddy (1967) 
considered an atmospheric model composed of discrete 
layers and matched solutions at  the interfaces. This gave 
controversial results because it could not adequately 
allow for the fact that the coefficient actually gets arbi- 
trarily large over a very small distance. Jones (1967) 
solved the asymptotic problem by adding a small imagi- 
nary component (c,) to  the phase speed (corresponding 
to Rayleigh damping) so that l/(U-c) became bounded 
in magnitude by l / lcf / .  Booker and Bretherton (1967) 
attempted to solve an initial value problem to generate 
the asymptotic solution. They used a Laplace transform 
approach but were only able to evaluat,e the resulting 
integral equation for large times, thereby losing vital 
information about the wave development in the critical 
layer. 

The development in a critical layer or singular line is 
important for two reasons: (1) it gives information about 
the time scales needed for development and the manner 
in which the final state is reached and (2) it tells one 
how long it takes for the linearization to become invalid. 
The asymptotic solutions imply an infinite energy density 
in the vicinity of the critical layer and thus-cast doubt 
upon the validity of the solutions. If one can show that 
this phenomenon occurs only after unrealistically long 
times, then these solutions need not be dismissed as a 
mathematical curiosity. 

To facilitate the solution of the mathematical problem, 
we find it convenient to assume the flow to be nondi- 
vergent. This, of course, removes gravity waves from our 
model, but at  the length and time scales we have been 
working with, they have not really been important, as we 
saw in the scaling in section 2. The nondivergent assump- 
tion is also justified by Charney’s (1963) scale analysis of 
large-scale tropical motions. At any rate, it will be shown 
that it leads to the same type of singularity as in eq (16) 
but allows a much simpler initial value problem. 

If the flow is horizontally nondivergent, a stream 
function can be defined such that 

Using these relations and eq (1) and (2), we can derive the 
linearized barotropic vorticity equation valid for non- 
divergent flow at any latitude: 

One can see how this leads to an equation like eq (16) 
by assuming solutions of the form 

$’ ( q y ,  t )  = R e [ P ( y ) e i ( k z - k c t )  I. 
The resulting equation is 

Comparison with eq (16) indicates the formal assump- 
tion of complete nondivergence has eliminated the - -y2 

and y 2 U / ( U - c )  terms in the coefficient of u in eq (16). 
Near a critical layer (where 1/( U-c) becomes dominant), 
the coefficient of o in eq (26) becomes singular in a manner 
similar to that in eq (16). Thus, the nondivergent model 
behaves like the divergent one near the critical latitude. 

Since we wish to  consider an initial value problem, the 
solutions are periodic in time only in an asymptotic sense. 
Thus, we assume periodic solutions only in 2: 

$’(2, Y ,  t)=Re M Y ,  t)ef’czl. 

This leads to 

where p*=p- ( d 2 U / d y 2 ) .  
The method adopted for the solution of this equation is 

that known as the modified Euler technique discussed by 
Lilly (1965) and Young (1968). Lilly found the method 
desirable for ordinary differential equations because it is 
neutrally stable and conserves mean square vorticity for 
spectral models. In  extending its use to a partial differen- 
tial equation, it retains computational stability. This 
difference scheme for the time dependence is 

[V+’+VI [ ($-k2)  $ r 1 = [ ( $ - k 2 )  $1 -2 ikAtp* 

-Atk 2 ([($-k2)  $7+’+[(.$-k2) $7) (28) 

where t=nAt.  Centered differences are used in y :  

where y = i A y .  

terms on the left-hand side, we obtain 
Using eq (28) and (29) and rearranging to place all nf 1 

It is assumed that $ is initially zero everywhere from 
- D < y < + D  but that a disturbance $(D, t )= l  is raised 
along the northern boundary at  t = O  and thereafter kept 
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constant with time. Alternatively, one could apply a 
periodic forcing in time to simulate a wave traveling along 
the boundary in the manner of Houghton and Jones (1969). 
However, since eq (25) is invariant under a Galilean trans- 
formation of the type 

U(Y> -.U(Y) + U' 

where U' is constant, the two approaches are equivalent. 
The initial and boundary conditions are, therefore, 

#(Y,O) =o for -D<y<+D, 
#(D,  O)=l .O ,  

$(D, t )  = 1 .o, 
and 

$(-D,  t ) = Q . O .  

The last equation implies a reflecting wall at  y=--D 
since v=O there; its effect is negligible here since very 
little energy propagates to that latitude in this solution. 

With the boundary conditions, there is a complete set 
of linear algebraic equations, one for each internal grid 
point, which determine # from its values for the preceding 
time step. The system can be written as 

&"+'=b". 

If m is the number of internal grid points, A is an m X m  
matrix of coefficients that is constant with time; +"+l is a 
column vector of m elements; and b" is another column 
vector of m elements that depends on the values of $7. 
Since + is complex, this is equivalent to the solution of 
2 m algebraic equations for real variables. In  this work, 49 
internal grid points were used, resulting in 98 algebraic 
equations. The fact that A does not vary with time means 
that one may perform a Gaussian elimination on it only 
once and simply back substitute at  each time step when 
there is a new term b". 

As an aid to the interpretation of the solutions to this 
problem, it is helpful to consider what classical wave 
theory tells us about the problem. It is well known 
that eq (25) allows only stable Rossby waves unless 
[a-(d2U/dyZ)] is zero somewhere. Using WKB logic, we 
may consider U to be locally constant (see Morse and 
Feshbach 1953). Solutions of the form 

satisfy the dispersion relation: 

(31 1 

By setting +=l.O at the boundary, we have specified 
its phase to be constant in time. Thus the frequency 
should be zero there, and eq (31) determines a value for F: 

In  this manner, the two conditions a t  the boundary 
(that the wave be stationary with a given zonal wind) 

determine a wavelength in y. From the dispersion relation 
(31), one can compute a group velocity for the y 
direction: 

(33) 

Thus the zonal wind at  the boundary indirectly predicts 
an initial group velocity. With only qualitative accuracy, 
we can assume that the disturbance excited a t  the northern 
boundary will propagate toward the Equator with a local 
group velocity given by eq (33) and a structure Z2 (y) given 

Since we are mainly concerned with the behavior near a 
critical layer, it will suffice to consider a linear shear flow. 
For convenience, we will assume it to  have a zero at  
y=O. Thus 

by eq (32). 

(34) 

where dU/dy=constant. The latitude y=O therefore is the 
critical latitude for the wave with speed c=O. 

Noticing that I becomes large near y=O, we can ap- 
proximate eq (32) and (33) thereby: 

If a wave group approaches y=O from y=D at this 
velocity, the time it takes to get there will be 

The fact that this integral is not finite leads to the concept 
of absorption since the group is neither reflected nor 
transmitted; it is simply retarded. This explanation gives 
the right behavior for the phenomenon, but the WRB 
theory is wrong in principle. For a WKB approximation to 
be valid, the local wave number 1 should not vary much 
over a wavelength (=27r/Z). I n  other words, the percentage 
change in wave number over a wavelength L,, given by 

a i  
-'u d L = -  a l a T  -, 

z ay 12 

must be of order unity or less. In our case, (35) shows that 
1 is proportional to y-112 near the critical level. Thus near 
y=O, the above expression gives 

which goes to infinity as y goes to zero; thus the WKB 
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TABLE 2.-Physical parameters for  the three cases studied numerically 

Case k W )  U(D) d Uldu C. Y 

A 2.1 6.5 0.0225 0.015 0.0133 
B 2.1 4.0 .05 .033 .042 
C . 7  1.7 . 3  . 2  .20 

- 1  5 15 -15 

- 1  5 I &  -1.5 
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- 1.5 0 1.5 - I  5 0 1.5 

Y Y 

FIGURE 9.-Real (solid lines) and imaginary (dashed lines) parts of 
the stream function $ ( y )  of case A for initial stages of develop- 
ment. The variables specified are k, an east-west wave number, 
and d U l d y ,  the shear of the mean wind. 

-1,s 0 1.5 

1 
- 1  5 - 1.5 0 15 

Y 

FIGURE IO.-Same as figure 9, except for later times. 

approximation is invalidated near the singularity. How- 
ever, it can still give us a first estimate of the rate of 
energy propagation away from the singularity. 

Since we have chosen a linear wind profile and have 
chosen it to be zero at y=O, the parameters I@), U(D),  
dU/dy ,  and C,,(D) are all related. If any one of them is 
known along with the east-west wave number k, the 
other three can be computed. For convenience, however, 
they have all been calculated in table 2 for the three 
numerical experiments we shall consider. 

t.30 , 

-1.5 
- 1 5  0 15 -15 ' 15 

Y Y 

FIGURE 11.-Real (solid lines) and imaginary (dashed lines) parts of 
the stream function $ ( y )  of case B for initial stages of develop- 
ment. The variables specified are k, an east-west wave number, 
and d U l d y ,  the shear of the mean wind. 

'.5rTfrl 

__.- ...- 
__ . - -  ....-.- ...-. 
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I 

Y O  0 

-._ 

' t=75 t=120 

- I  5 -I 5 
-1.5 0 I 5  -1.5 0 , 1.5 

Y Y ' ,  
FIGURE 12.-Same as figure 11, except for later times. 

Cases A and B differ only in the mean shear d U / d y  
(and hence UfD)) .  By our WKB logic, we'expect 3. in 
case B to have a larger wavelength in y and hence to 
propagate faster toward the Equator. This is readily 
verified by inspection of figures 9 through 14. However, 
although the WKB method also predicts t.hat the wave- 
length near the critical level becomes extremely small, it, 
does not occur in the numerical solutions. In  the quaei- 
steady solutions (the last figure of each series), no drastic 
shortening of wavelength near y= 0 is apparent. 

One can scale this problem as the problems in sections 3 
and 4 by choosing a to be 100 m s-l. This gives a 
length scale, L,  from eq (6) of approximately 2100 km 
and a corresponding time scale factor T of 5.85 hr. At 
this scaling, cases A and B correspond to waves in which 
east-west wavelength is approximately 6300 km, and C 
corresponds to a wavelength of 19,000 km. 

In  the initial stages of development, there is 8 rapid 
growth in the magnitude of # throughout the whole 
domain as a response to the impulsive start. This response 
dies off exponentially away from the forced boundary in 
a manner similar to potential flow. The initially irrotational 
motion satisfies 

A 

A 

415-428 0 - 71 - 6 
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FIGURE l3.-Real (solid lines) and imaginary (dashed lines) parts 
of the stream function $(y) of case C for initial stages of develop- 
ment. The variables specified are k, an east-west wave number, 
and d U / d y ,  the shear of the mean wind. 
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Solutions of this equation are 

This relation can be verified quantitatively for case C 
at 1=3.0. After this initial effect, the solution becomes 
oscillatory and the disturbance begins to propagate south- 
ward. This propagation slows down as the disturbance 
approaches y=O, where the singularity exists in the 
asymptotic problem. Eventually] the solution reaches a 
quasi-steady state in which it has negligible a m p h d e  on 
the southern side of the critical latitude. This solution 
remains essentially unchanged even for times three to 
four times that needed for development. 

The essential difference between the solutions for cases 
A and B is that they show different characteristic wave- 
lengths in 3 .  The fact that there is a shorter wavelength in 
case A verifies our prediction that this wavelength should 
be consistent with the classical Rossby wave formula for 
stationary disturbances: 

The three cases are consistent with the prediction that 
the time scales for development to steady states should 
depend on the group velocity a t  the boundary. When 
using long-period calculations, it was found that case A 
attained a quasi-steady state at  a time of 420 nondimen- 
sional units; case B took 120 units; and case C, about 60. 

We can assess the validity of the linearization by asking 
whether the value of a$/@, which corresponds to u', 
becomes much larger than u' a t  the boundary. In case C, 
there is a tendency for the derivative of It to get large, but 
it never exceeds twice the boundary value even when the 

I I -1.5 
-1.5 0 1.5 -1.5 1.5 
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FIGURE 14.-Same as figure 13, except for later times. 

calcuIations were carried out to large times compared to 
the time needed for steady development. 

An important property of the solutions is the variation 
of $ phase with latitude, which corresponds to a tilt of the 
troughs and ridges from southwest to  northeast. This tilt 
is indicative of a northward transport of zonal momen- 
tum. Application of the theory of Eliassen and Palm 
(1961) to this model shows that this northward flux of 
momentum implies a southward energy flux, suggesting 
that reflection is not too important. The relatively small 
values of $ for y<O indicate that little energy is trans- 
mitted beyond the critical latitude. Thus we conclude 
that the wave-mean flow interaction represents an ab- 
sorption of wave energy. 

6. SUMMARY AND CONCLUDING REMARKS 

The atmosphere was idealized to isolate the effect of 
the horizontal shear of the wind on the interaction between 
mid-latitude regions and the Tropics as a single layer of 
hydrostatic fluid with a free surface. The problem with- 
out basic zonal wind was first solved to make a numerical 
comparison between motions with and without shear for 
the free modes of the Tropics. A resonance phenomenon 
was examined by forcing the boundary of the model with a 
wave disturbance of a specified phase velocity. As ex- 
pected, the largest response in the Tropics occurred when 
the forcing velocity was close to the phase velocity of a 
free mode (i.e., to the west). 

It was not convenient to solve for the free modes in a 
direct manner when the effects of a zonal wind shear were 
included. Instead, they were inferred from the resonant 
response to the forced problem. The forced problem was 
treated only 'for those phase velocities for which the 
governing equation was not singular. Because the equa- 
tion was singular for all phase velocities which were neither 
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large eastward nor large westward, it was left for a 
special analysis. The resonant responses to  the nonsingular 
forced problem indicated that the main effect of the zonal 
wind \vas to Doppler shift the phase speeds of the free 
modes in the direction of the wind averaged over all 
latitudes of the model. 

Because of this Doppler shift, the observed winds 
appeared to  inhibit interaction between the Tropics and 
mid-latitudes. If the westerlies of mid-latitudes extended 
to the Equator, the free modes of the Tropics would 
move with phase speeds closer to  those of mid-latitude 
disturbances and hence be closer to  resonance. 

The important case that could not be treated by the 
above analysis occurred when the longitudinal phase 
velocity of a propagating wave became equal to  the mean 
zonal flow at  some “critical” latitude. This case was 
treated by simplifying the model slightly by assuming 
the flow to be nondivergent. This assumption made it 
feasible to pose a problem in which the northern boundary 
of the initially undisturbed Tropics was forced and the 
motion computed as a function of time and latitude. 
The numerical solutions to this marching problem in- 
dicated that singular line absorption of wave energy can 
occur at  critical latitudes. Time scales for this energy loss 
from mid-latitude motions range from 2-3 days for plane- 
tary scales to  several weeks for small scales (1000 km). 

The observed shear of the zonal wind implies that this 
mechanism serves to inhibit the propagation of wave 
disturbances, just as the Doppler shift of the free modes 
does. An important difference, however, is that the 
Doppler shift mechanism does not affect the mean zonal 
wind, in contrast to the strong influence of the eddy mo- 
tions implied in the absorption mechanism. Interestingly, 
there are both observational and theoretical grounds that 
indicate the importance of the absorption mechanism. 

The observed eddy motions transport eashyard momen- 
tum into the latitudes where the zonal winds are a maxi- 
mum (Mak 1969). The observed energy flux (energy 
flux here is defined as plu’, the pressure work done on the 
fluid north of a latitude circle by the fluid south of it) is 
southward (Mak 1969) and thus consistent with the 
momentum flux for the model treated here once a steady 
state has developed. Thus, the propagation of wave 
disturbances from mid-latitudes into the Tropics is con- 
sistent with the observed momentum and energy fluxes. 

Theoretical models have exhibited this observed north- 
ward momentum flux and southward energy flux. Mak’s 
(1969) stochastic model also shows a very strong conver- 
sion from eddy kinetic energy to zonal kinetic energy in 
the Tropics, implying that the motions serve to  maintain 
the zonal winds. However, Mak did not discuss in detail 
the mechanism by which this momentum is taken from 
the easterly flow. Although he used a two-layer model, 
his results indicate little vertical coupling; it is thus 
reasonable to assume that his results can be interpreted 
in terms of the one-layer model presented here. 

Mak found that the eddy motions were much smaller in 
his model Tropics than in mid-latitudes. The dominant 

. 

motions had phase speeds directed westward relative to  
the mean flow. Prom the present analysis of the forced 
modes in the presence of shear, these motions are precisely 
the ones one would expect to propagate, since the resonant 
responses corrcsponding to the free modes were always 
westward-moving. However, the forcing at  the boundary 
of Mak’s model included eastn-arcl-moving waves. For 
these waves, the present model predicts singular line 
absorption and conversion of wave energy to mean flow 
energy. Interestingly, Mak’s model shows very little wave 
energy in the Tropics for these phase velocities but shows 
a very strong conversion from eddy kinetic energy to 
zonal kinetic energy. 

In conclusion, the shear of the zonal wind can act to  
limit the propagation of wave disturbances into the Tropics 
to  those waves traveling more westward than the mean 
flow at  any latitude. Other disturbances, which include 
most of the eastward-moving or slo\vly westward-moving 
distrubances of mid-latitudes, can influence the Tropics 
by being absorbed by the mean flow and maintaining the 
easterlies. 
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